Course Information Sheet

Uteken educetion institution. Claude Madical University is Destident						
Figher education institution: Slovak Medical University in Bratislava						
Faculty of Medicine Course addet ML 055						
Course code: VL 035 Course title: Radiation protection						
Person and a range of teaching (in hours composter): 14						
Lectures: 14/weekly 1 hour						
Practical excercises:						
(Total work load of the student is 25 hours)						
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
Form of study: full-time						
Number of credits: 1						
Recommended semester/trimester study: 9th semester						
Level of higher education study: 1st + 2nd level (MUDr.)						
Prerequisite courses: -						
Requirements for completion of the course:						
Method of final assessment and competition of the subject Radiation protection consists of continuous						
assessment of study results during the semester. For successful completion of the subject and obtaining						
credits is necessary to:						
a) 90 % participation in lectures.						
b) 70 % success in the written exam						
Classification scale.						
A = 100-94 % success $A = excellent = 1$ (excellent results)						
B = 93-80% success $B = really good = 1.5 (above average results)$						
$C = 88-83\%$ success $C = a \circ od = 2$ (average results)						
D = 82-77 % success $D = satisfactory = 25 (accentable results)$						
E = 76.70% success E anough = 3 (the results meet only the minimum criteria)						
$E = 70^{-70}$ % success $E = enough = 5$ (the results does not meet only the minimum criteria)						
FA = 0.6</math success $FA = hol enough (the results does not meet even the minimum criteriu)$						
Creatis will not be granied to a student who did not meet 90% altendance in tectures, ald not meet the						
requirements for completion of the courses						
The load of students in indirect teaching is 11 hours. It includes preparation for seminars and studies						
Learning outcomes:						
Of the student is required to:						
VV1- remember and understand basic knowledge of radioactivity and ionizing radiation						
VV1- remember and understand basic knowledge of radioactivity and ionizing radiation,						
vv2- understand and be able to distinguish between thatviaual dosimetric quantities in radiation						
<i>W2</i> strift the relationships between these quantities,						
vv3- clarify the relationship between the interaction of ionizing radiation with matter, explain by own						
Words the methods of radiation detection, justify the biological effects of tonizing radiation and dose,						
VV4- partially analyse radiation protection,						
v v 5- categorize dose values for individual groups.						
Diversional foundations of radiation protoction, history of radiation protoction (and in-						
• rnysical journations of radiation protection, history of radiation protection (radioactivity,						
nistory and present of units and quantities in radiation protection).						
• Interactions of ionizing radiation with matter.						
• Detection of ionizing radiation (basic dosimetric systems).						
• Biological effects of radiation (effect on cells, tissues, late somatic and genetic effects).						
• Act 87/2018 on radiation protection. Acceptable dose (exposure) values in medical						
applications).						
• Work with open and closed sources of ionizing radiation, basic principles, radioactive waste.						
• Ensuring radiation protection (radiodiagnostics, nuclear medicine, radiotherapy, nuclear						
energy, industrial sources).						
Methods and principles of radiation protection of patients and workers.						

Recommended literature:						
Gebeová, K., Burganová, A. Radiačná ochrana a rádiobiológia pre nelekárske zdravotnícke odbory.						
SZU, 2020						
Kolektív autorov, Editor: Vladislav Klener: Princípy a praxe radiační ochrany. Azin CZ Praha. Praha						
2000, 619 s. ISBN 80-238-3703-6.						
Language requirements: Slovak language						
Notes:						
The subject is taught in the Slovak language						
Course assessment						
Assessed students in total: 135						
Α	В	С	D	E	FX	
Lecturers:						
doc. RNDr. Silvia Dulanská, PhD.,						
prof. RNDr. Ľubomír Mátel, CSc.						
Date of last modification: 22.11.2021						
Approved by: person responsible for realization, development and ensuring of the study program quality prof.						
MUDr. Iveta Šimková, CSc.						